
We will do this page together! You will need a straight edge

W-up Week 4 Friday Linear Programming

FO TAL PRODUCTION	_	_		
Name				
Maine_				_

Graph ALL of the following on the same grid. Shade only the solution for the system of inequalities. (The portion where the shading overlaps for all four conditions.) Do the rest of your w-up in your notebook. (p160/10)

Notes:

Finding corner points:

Substitute into OBJECTIVE FUNTION

Corner point	Objective function: 100x+40y=N	Objective function value
(8,0)	100(0)+40(8)	320
2,6	100(2) + 40(6)=200+240	440
(\$,07	100(5) + 40(0)=500	500
(0,0)	100(0) + 40(0)=0	0

The maximum value is: $500 \omega (5,0)$

Work on this while I stamp homework

Using Linear Programming to Maximize Profit

Adv Algebra 2, p.159 problem 2

Name		

Business: You are screen-printing T-shirts and sweatshirts to sell at the Polk County Blues Festival and are working with the following constraints.

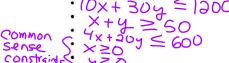
- · You have at most 20 hours to make shirts.
- · You want to spend no more than \$600 on supplies.
- You want to have at least 50 items to sell.

Color T-Shirt

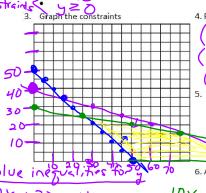
- Takes 10 minutes to make
- Supplies cost \$4
- Profit \$6

Sweatshirt

- Takes 30 minutes to make
- Supplies cost \$20
- Profit \$20



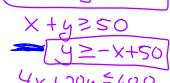
How many T-shirts and how many sweatshirts should you make to maximize your profit? How much is the maximum profit?

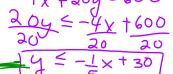

Organize the information in a table.

	T-Shirts, x	Sweatshirts, y	Total
Minutes	IOX	30 u	1200
Number	X	4)	50
Cost	44	20 U	600
Profit	6X	2074	Maximiz

2. Write the constraints and objective function.

Objective Function: $\rho = 6x + 20y$




5. Test the spordinates of each vertex in the objective function

(120,0)

25 25 6(2) 50 0 6(5) 75 15 6(7) 20 0 6(12

10x + 30(0) = 1200 X=120

